Get 40% Off
👀 👁 🧿 All eyes on Biogen, up +4,56% after posting earnings. Our AI picked it in March 2024.
Which stocks will surge next?
Unlock AI-picked Stocks

Scientists fix fractures with 3D-printed synthetic bone

Published 09/29/2016, 02:51 AM
Updated 09/29/2016, 02:51 AM
Scientists fix fractures with 3D-printed synthetic bone

By Kate Kelland

LONDON (Reuters) - Scientists in the United States have successfully treated broken spines and skulls in animals using 3D-printed synthetic bone, opening the possibility of future personalized bone implants for humans to fix dental, spinal other bone injuries.

Unlike real bone grafts, the synthetic material - called hyper-elastic bone - is able to regenerate bone without the need for added growth factors, is flexible and strong, and can be easily and rapidly deployed in the operating room.

Giving details in a teleconference, the scientists said the results of their animal trials - published on Wednesday in the Science Translational Medicine journal - were "quite astounding".

Human trials could begin with five years, they said.

The team found that when used in spinal injuries in rodents and to mend the skull of a monkey, the hyper-elastic bone, made mostly of a ceramic and polymer, quickly integrated with surrounding tissue and began regenerating bone.

It swiftly mended bones in the spines of the rats and healed the monkey's skull in just four weeks, with no signs of infection or other side effects, the scientists said.

"Another unique property ... is that it's highly porous and absorbent - and this is important for cell and tissue integration," said Ramille Shah of Northwestern University's department of material science, engineering and surgery, who co-led the work.

"Even when it’s deformed or squeezed into a space, it still maintains high porosity, and this is also very important for blood vessels to infiltrate the scaffold so that it can further support cell and tissue growth."

3rd party Ad. Not an offer or recommendation by Investing.com. See disclosure here or remove ads .

Other types of bone grafts currently in development are often too brittle to be shaped and handled by surgeons, and risk being rejected once inside the body, or may be too expensive or difficult to manufacture for widespread use.

With this hyper-elastic bone, however, many of those issues would be overcome, said Adam Jakus, Shah's co-researcher at Northwestern University.

"It's purely synthetic, very cheap and very easy to make," he said. "It can be packaged, shipped and stored very nicely."

Shah she hoped these properties would mean patients in developing countries would also benefit.

"There are a lot of pediatric patients, especially in third world countries, who are born with orthopedic or Maxillofacial(face and jaw bone) defects," she said. "And because the hyper-elastic bone is scalable at a low cost, (we hope) it would be accessible to those types of patients."

Latest comments

Risk Disclosure: Trading in financial instruments and/or cryptocurrencies involves high risks including the risk of losing some, or all, of your investment amount, and may not be suitable for all investors. Prices of cryptocurrencies are extremely volatile and may be affected by external factors such as financial, regulatory or political events. Trading on margin increases the financial risks.
Before deciding to trade in financial instrument or cryptocurrencies you should be fully informed of the risks and costs associated with trading the financial markets, carefully consider your investment objectives, level of experience, and risk appetite, and seek professional advice where needed.
Fusion Media would like to remind you that the data contained in this website is not necessarily real-time nor accurate. The data and prices on the website are not necessarily provided by any market or exchange, but may be provided by market makers, and so prices may not be accurate and may differ from the actual price at any given market, meaning prices are indicative and not appropriate for trading purposes. Fusion Media and any provider of the data contained in this website will not accept liability for any loss or damage as a result of your trading, or your reliance on the information contained within this website.
It is prohibited to use, store, reproduce, display, modify, transmit or distribute the data contained in this website without the explicit prior written permission of Fusion Media and/or the data provider. All intellectual property rights are reserved by the providers and/or the exchange providing the data contained in this website.
Fusion Media may be compensated by the advertisers that appear on the website, based on your interaction with the advertisements or advertisers.
© 2007-2024 - Fusion Media Limited. All Rights Reserved.